Журнал «Экономические стратегии», ключевое слово: «искусственный интеллект»


Япония-2040: диалектика трансгуманизма и общество будущего

DOI: 10.33917/es-5.191.2023.78-93

Проведенный анализ сути, содержания и форм сценарного состояния Японии в 2040 г., отраженных в 11-м Научно-техническом прогнозе NISTEP 2019 г., выявил ряд концептуальных диалектических противоречий. Они сводятся к вопросу о допустимости и целесообразности изменения природы человека ради обеспечения его благополучного, безопасного, наполненного смыслом и счастливого существования. Предлагается к дискуссии вывод о неизбежности трансгуманизации человечества в масштабах отдельной страны (Японии) и всего мира, учитывая характер стоящих перед ним больших вызовов. Отмечается возможность удержания их исторического развития в условно-гуманистическом русле, учитывая акцент социальных реформ в Японии, отраженных в 6-м Базовом плане научно-технического и инновационного развития страны, на построении общества наиболее полной реализации и использования интеллектуального потенциала человека.

 
Источники:
 
1. The 10th Science and Technology Foresight Scenario Planning from the Viewpoint of Globalization. Summary Report [Электронный ресурс]. Science and Technology Foresight Center, National Institute of Science and Technology Policy (NISTEP), Ministry of Education, Culture, Sports, Science and Technology (MEXT). September, 2015. URL: https://nistep.repo.nii.ac.jp/records/4491

2. Report on the 5th Science and Technology Basic Plan [Электронный ресурс]. Council on Science, Technology and Innovation. Cabinet office, Government of Japan. December 18, 2015. URL:

https://www8.cao.go.jp/cstp/kihonkeikaku/5basicplan_en.pdf

3. Toward Realization of the New Economy and Society — Reform of the Economy and Society by Deepening of the “Society 5.0” — Outline [Электронный ресурс]. Keidanren (Japan Business Federation). April 19, 2016. URL: https://www.keidanren.or.jp/en/policy/2016/029_outline.pdf

4. Мамедьяров З.А. Дорога к «Обществу 5.0» [Электронный ресурс]. Эксперт. 2018. № 44. URL: https://expert.ru/expert/2018/44/doroga-k-obschestvu-5_0/?ysclid=llm6l4drah852037971

5. Уэмура Н.М. «Общество 5.0» — взгляд Mitsubishi Electric [Электронный ресурс]. Экономические стратегии. 2017. № 4. С. 122–131. URL: https://www.inesnet.ru/wp-content/mag_archive/2017_04/es2017-04-122-131_Uemura_Noritsugu.pdf

6. Mitsubishi Electric представила платформу e-F@ctory российским компаниям [Электронный ресурс]. ООО «Мицубиси Электрик (РУС)». 2017. 20 июля. URL:https://ru.mitsubishielectric.com/ru/news/releases/local/2017/0720-a/pdf/170720-a_local_ru_ru.pdf

Динамика накопления капитала

DOI: 10.33917/es-2.188.2023.24–35

В статье рассматривается схема расширенного воспроизводства по Марксу через призму анализа накопления капитала Розой Люксембург в преломлении влияния инфраструктуры на развитие капитализма. Даны примеры инфраструктуры XXI в., в том числе рассмотрены многосторонние платформы — платежные системы для трансграничных платежей, сопряженные с широкополосным спутниковым доступом в Интернет и средой искусственного интеллекта.

Источники:

1. Кузнецова А.И. Инфраструктура: вопросы теории, методологии и прикладные аспекты современного инфраструктурного обустройства. Геоэкономический подход. М.: КомКнига, 2006. 456 с.

2. Новоселов А.С. Региональные рынки. М.: ТЕРРА, 1999. 476 c.

3. Самуэльсон П., Нордхаус В.М. Экономика. М.: Вильямс,2001. 688 с.

4. Бузгалин А.В., Колганов А.И. Глобальный капитал. М: Едиториал УРСС, 2004. 512 с.

5. Вазюлин В.А. Логика «Капитала» К. Маркса. 2-е изд. М: Современный гуманитарный университет, 2002. 392 с.

6. Гегель Г.В.Ф. Наука логики. СПб.: Наука, 2005. 799 с.

7. Маркс К. Капитал. Т.I–III. М.: Политиздат, 1978. 629 с.

8. Люксембург Р. Накопление капитала. 5-е изд. М. — Л.: Гос. социально-экономическое издательство, 1934. 478 с.

9. Организация экономического сотрудничества и развития, M3 для США [Электронный ресурс] // FRED, Федеральный резервный банк Сент-Луиса. URL: https://fred.stlouisfed.org/series/MABMM301USM189S.

10. Зайденварг В.Е., Подоляк В.И., Сараев В.Н. Основы управления кризисами на рынках угля, газа и электроэнергии. М.: Институт экономических стратегий, 2003. 192 с.

11. Малков С.Ю. Социальная самоорганизация и исторический процесс: Возможности математического моделирования. М.: Книжный дом «ЛИБРОКОМ», 2009. 240 с.

12. Interlinking payment systems and the role of application programming interfaces: a framework for cross-border payments. Basel, Switzerland, Bank for International Settlements, Committee on Payments and Market Infrastructures (CPMI). Report to the G20, 2022, July. 53 p.

Цифровые технологии за границами хайпа: глобальный ландшафт

DOI: https://doi.org/10.33917/es-6.186.2022.104-110

В статье рассматриваются три ключевые проблемы, которые играют особую роль в разработке стратегий и политики для цифровых технологий: 1) особенности цифровых технологий, которые в значительной степени предопределяют принципы и методологические подходы к разработке стратегических документов; 2) драйверы, основные игроки и тренды глобального рынка; 3) тенденции накопления базы технологических знаний для обеспечения конкурентных преимуществ национальным компаниям на кратко- и среднесрочных траекториях.

Источники:

1. Gaponenko N.V., Glenn J.C. Technology Industry 4.0: Problems of Labor, Employment and Unemployment // Studies on Russian Economic Development. 2020. Vol. 31. No. 3. P. 271–276.

2. Гапоненко Н.В. Теоретические и методологические основы исследования инновационных систем и формирования технологических приоритетов их развития в экономике, основанной на знаниях. М.: ИПРАН РАН, 2020. 151 с.

3. Гапоненко Н.В. Закономерности и особенности эволюции секторальных инновационных систем в рамках долгосрочного цикла // Systems and Management. 2020. № 1. C. 44–67.

4. Гапоненко Н.В. Секторальные инновационные системы в экономике, основанной на знаниях. М.: ИПРАН РАН, 2021. 264 с.

5. Going Digital: Shaping Policies, Improving Lives. Paris: OECD Publishing, 2019.

6. IT Industry Outlook 2021. CompTIA, 2020.

7. Гапоненко Н.В. Глобальные вызовы в формировании полицентричного мирового порядка: траектории ретро и траектории будущего [Электронный ресурс] // Экономические стратегии. 2020. Т. 22. № 1(167). С. 28–35. DOI: https://doi.org/10.33917/es-1.167.2020.28-35.

8. Positive 5G Outlook Post COVID-19: What Does It Mean for Avid Gamers? Forest Interactive, 2020.

Россия в глобальном мире искусственного интеллекта: оценка по мировым рейтингам

DOI: https://doi.org/10.33917/es-2.182.2022.20-31

Системы искусственного интеллекта (СИИ) быстро становятся инструментом конкурентной борьбы, важнейшим фактором повышения эффективности социально-экономического воспроизводства и даже атрибутом развития человеческой цивилизации, ядром глобальных и национальных проектов развития. Сравнительные оценки степени развития СИИ также превратились в инструмент воздействия на экономические стратегии государств и компаний и поддержки их реализации. Определение места страны в мировой «табели о рангах» позволяет не только уточнить ее реальный статус в глобальной конкуренции в СИИ, но и обнаружить неучтенные элементы для повышения результативности государственных инициатив в области развития СИИ

Источники:

 

1. Глава ВЭФ заявил, что ковид следует рассматривать как долгосрочный вызов для человечества [Электронный ресурс] // ТАСС. URL: https://tass.ru/obschestvo/13273357.

2. Кричевский Г.Е. НБИКС-технологии для Мира и Войны. Саар брюккен, Германия: Ламберт, 2017. 634 с.

3. Овчинников В.В. Дорога в мир искусственного интеллекта. М.: Институт экономических стратегий, РУБИН, 2017. 536 с. (Cерия: Стратегическая аналитика).

4. Гонка за цифровым призраком [Электронный ресурс] // Коммерсант. 2019. 24 июня. URL: https://www.kommersant.ru/doc/4003879.

5. Каляев И.А. Искусственный интеллект: камо грядеши? [Электронный ресурс] // Экономические стратегии. 2019. № 5. С. 6–15. DOI: https://doi.org/10.33917/es-5.163.2019.6-15.

6. Markoff J. A learning advance in artificial intelligence rivals human abilities [Электронный ресурс] // The New York Times. 2015. URL: https://www.nytimes.com/2015/12/11/science/an-advance-inartificial-intelligence-rivals-human-vision-abilities.html.

7. Агеев А.И., Логинов Е.Л., Шкута А.А. Китай как нейроинформационная мегаматрица: цифровые технологии структурирования когнитивных ансамблей порядка [Электронный ресурс] // Экономические стратегии. 2021. № 1. С. 50–61. DOI: https://doi.org/10.33917/es-1.175.2021.50-61.

Цифровизация сектора здравоохранения на основе технологии искусственного интеллекта в Японии: ключевые проблемы и подходы к решению

DOI: 10.33917/mic-5.100.2021.87-102

В статье представлено описание и анализ реализуемой японским правительством политики модернизации сектора здравоохранения на основе технологии искусственного интеллекта, приведены конкретные примеры некоторых научно-исследовательских проектов и практического применения описываемых технологий, выявлены проблемные области реализуемой политики и разрабатываемых проектов.

Модернизация сектора здравоохранения и медицинского обслуживания с применением новейших цифровых технологий, в частности, технологии искусственного интеллекта, является на сегодня одним из ключевых мировых трендов. В России цифровая трансформация здравоохранения определена как одна из ключевых задач и производится в рамках Национального проекта «Здравоохранение».

Изучение успешных примеров внедрения технологии искусственного интеллекта, а также, проблем, препятствующих или замедляющих интеграцию данной технологии и способов их преодоления, может стать ценным уроком для стран, также вовлеченных в разработку национальных стратегий по развитию искусственного интеллекта. 

Digitalization of the healthcare sector in Japan based on artificial intelligence technology: key problems and solutions

 

Источники:

1. Мелдо А.А., Уткин Л.В., Трофимова Т.Н. Искусственный интеллект в медицине: современное состояние и основные направления развития интеллектуальной диагностики // Лучевая диагностика и терапия. 2020. Т. 11. №1. С. 9-17. URL: https://doi.org/10.22328/2079-5343-2020-11-1-9-17

2. Моисеенко В.М., Мелдо А.А., Уткин Л.В., Прохоров И.Ю., Рябинин М.А., Богданов А.А. Автоматизированная система обнаружения объемных образований в легких как этап развития искусственного интеллекта в диагностике рака легкого // Лучевая диагностика и терапия. 2018. № 3. С. 62-68. URL: https://doi.org/10.22328/2079-5343-2018-9-3-62-68

Стратегия формирования правового поля в сфере определения ответственности за вред, причиненный технологиями с использованием элементов искусственного интеллекта

DOI: 10.33917/es-7.173.2020.118-124

В современном мире внедрение технологий с элементами искусственного интеллекта во все сферы жизнедеятельности развивается стремительными темпами, которые значительно опережают развитие законодательства. В связи с этим возникает проблема определения ответственности за вред, причиненный применением подобных технологий, которая может быть разрешена только в результате разработки комплексной стратегии развития правового поля в данной сфере и доведения действующего законодательства до уровня информационно ориентированного Общества 5.0, концепция которого предполагает технический прорыв в области кибертехнологий. Цель настоящего исследования состоит в анализе сложившейся ситуации в сфере правового регулирования ответственности за вред, причиняемый технологиями с элементами искусственного интеллекта, и в определении стратегии формирования правового поля в данной сфере. В первой части работы проводится анализ сложившейся правовой ситуации на основе научных разработок в данной области, а также решений, предлагаемых стратегией развития технологий искусственного интеллекта как основы для

формирования правового поля. Вторая часть работы посвящена стратегии формирования правового поля в сфере определения ответственности за использование технологий с элементами искусственного интеллекта. В заключительной части статьи делается вывод о том, что рассматриваемая стратегия может быть реализована путем разработки комплекса мер, направленных на имплементацию в действующее  законодательство положений, определяющих ответственность

за использование технологий с элементами искусственного интеллекта

Нейроуправление: конвергентная интеграция человеческого мозга и искусственного интеллекта

DOI: 10.33917/es-6.172.2020.46-57

Мировые достижения в области нейронаук открыли ранее недоступные возможности для создания принципиально новых систем управления на основе нейроинтерфейсов (мозг — компьютер — мозг). Происходит гибридизация сред — постепенное размывание границ между физической, когнитивной и цифровой реальностью. Описания социальных и когнитивных практик реальных людей трансформируются в формирование искусственного электронного субъекта, который становится более реальным, подменяя в социуме биологический объект (человек есть то, как он представлен в электронной информационной среде). При этом развитие нейроинтерфейса в перспективе ведет к перекодировке нервной ткани и меняет биологический субстрат человеческого мозга и тела в векторе конвергентной коллаборации живых и искусственных нервных систем.

Наши американские партнеры-конкуренты (Минобороны США в лице DARPA) ведут мультидисциплинарные комплексные исследования в этой сфере, лидируя по реальным результатам, руководство США наращивает госфинансирование. Происходит качественное изменение технологий управления человеком, социумом и государством. Задача России в этих условиях — формирование собственного сегмента Нейронет с опорой на отечественные нейротехнологии по аналогии с программным импортозамещением в российской атомной энергетике.

Источники:

 

1. Красильникова Ю. Нейроинтерфейсы лишат людей когнитивной свободы [Электронный ресурс] // Хайтек. 2017. 15 августа. URL: https://hightech.fm/2017/08/15/cognitive_liberty.

2. Агеев А.И., Логинов Е.Л. Россия в новой экономической реальности. М.: ИНЭС, Ассоциация «Аналитика», 2016. 460 с.

3. Агеев А.И., Логинов Е.Л. Битва за будущее: кто первым в мире освоит ноомониторинг и когнитивное программирование субъективной реальности? // Экономические стратегии. 2017. № 2. С. 124–139.

Классификация систем искусственного интеллекта

DOI: 10.33917/es-6.172.2020.58-67

В статье рассмотрена классификация систем искусственного интеллекта (ИИ). Роль ИИ существенно возросла в последнее время во всех сферах жизни. Применение ИИ в государственном управлении, производстве, медицине, военном деле, в социальной и иных сферах, обусловило ряд вопросов, связанных с определением понятия ИИ и классификацией систем ИИ. Такая классификация необходима для понимания роли ИИ в цифровой экономике. Большое значение классификация приобретает в условиях интенсивного развития международных стандартов систем ИИ и систем, построенных на знаниях (экспертных, нейронных, многоагентных, киберфизических систем и систем на основе промышленного Интернета).

Источники:

 

1. Wiener N. Cybernetics or Control and Communication in the Animal and the Machine. Hermann & Cie Editeurs, Paris, The Technology Press, Cambridge, Mass., John Wiley & Sons Inc., New York, 1948.

2. Энциклопедия кибернетики: В 2 т. / Под ред. В.М. Глушкова. Т. 1. Киев, 1974.

3. Указ Президента РФ от 10 октября 2019 г. № 490 «О развитии искусственного интеллекта в Российской Федерации» (вместе с «Национальной стратегией развития искусственного интеллекта на период до 2030 года») [Электронный ресурс] // Департамент информационных технологий и цифрового развития Курганской области. URL: https://it.kurganobl.ru/Указ%20Президента%20РФ%20от%2010.10.2019%20N%20490.pdf.

4. Artificial Intelligence in Society [Электронный ресурс] // OECD. 2019. June, 11. URL: https://www.oecd-ilibrary.org/sites/eedfee77-en/index.html?itemId=/content/publication/eedfee77-en.

5. American National Standards Institute [Сайт]. URL: https://www.ansi.org.

6. Кукшев В. Международные стандарты цифровой экономики (ISO/IEC). Российский опыт [Электронный ресурс] // XIV Международная конференция «Нефтегазстандарт-2018». Екатеринбург, 2018. URL: https://238923.selcdn.ru/tm_production/media/files/events/extra_data/153/presentation/3_Kukshev_VI.pdf.

7. Кукшев В. Цифровые стандарты и международная практика каталогизации [Электронный ресурс]. Доклад на заседании Комитета по техническому регулированию, стандартизации и качеству Санкт-Петербургской торгово-промышленной палаты. Санкт-Петербург, 2019 . URL: https://238923.selcdn.ru/tm_production/activities/Vf8JlAml2ZPizh2faQGWgCe8lGZUWv58Y3ixHeAb.

Формирование в рамках ЕАЭС цифровой модели повышения прозрачности и успешности обеспечения контроля движения активов между участниками товарных, финансовых и имущественных сделок

DOI: 10.33917/mic-2.91.2020.5-12

В статье рассматриваются проблемы формирования цифровой модели повышения прозрачности и успешности обеспечения контроля движения активов между участниками товарных, финансовых и имущественных сделок в рамках финансовой системы ЕАЭС. Предлагается обеспечить повышение наблюдаемости любых сегментов финансовой системы, которую можно цифровым образом структурировать путем электронной цифровой идентификации каждой денежной единицы в доступных для мониторинга пространствах движения товарных, финансовых и имущественных активов. Получаемые результаты анализа могут быть использованы для оптимизации операционной динамики электронных транзакций явных альянсов и неформальных картелей финансовых агентов в наблюдаемом пространстве цифровых форматов финансовых коммуникаций с учетом движения финансовых средств в различной форме и номинированных в различных валютах.

Источники:

1. Агеев А.И., Радина В.А. Методика цифровой экономики в части управления и контрольной деятельности в реальном секторе экономики //Экономические стратегии. 2019. Т. 21. № 3 (161). С. 44-56. 

2. Агеев А.И., Ворожихин В.В., Кузык Б.Н., Махутов Н.А., Побываев С.А. Проблемы развития торговой, клиринговой, расчетной и платежной систем, обеспечивающих оптимизационное взаимодействие российских финансовых институтов и хозяйствующих субъектов //Стратегические тренды трансформации социально-экономических систем в рамках цифровой экономики/Материалы международной научно-практической конференции. М.: ИПР РАН, 2018. С. 7-9.

3. Агеев А.И., Логинов Е.Л., Махутов Н.А., Побываев С.А. Формирование системных механизмов защиты российских валютно-финансовых ресурсов в условиях спекулятивного манипулирования мировыми финансовыми рынками // Конкурентоспособность в глобальном мире: экономика, наука, технологии. 2017. № 7-2 (54). С. 8-11.

Стратегия Трампа на выборах: нейроматематический ключ к глубинным слоям сознания американского избирателя

DOI: 10.33917/es-7.165.2019.78-93

Ключевым фактором, определяющим успех выборной стратегии Трампа, стало использование методов когнитивной нейрофизиологии — цифровой идентификации виртуального двойника реального избирателя в информационных и социальных сетях. Семантизация состояний сознания и психики индивидов, выявляемых в Глобальной сети, позволяет на основе вычислительных решений осуществить инкапсуляцию (схватывание) целостной позиции, устраивающей большинство доступных для мониторинга людей, с целью задания вектора устойчивой сходимости выборной платформы Трампа и взглядов описанного и проанализированного конкретного американского избирателя. Идентификация позволяет воздействовать на доминантный очаг эмоционально-образного блока для дистанционной когнитивной коррекции политической позиции людей в условиях стратегической бифуркации (выборы). Российские наработки в сфере нейроменеджмента личности также имеют большое научно-практическое значение

Источники:

1. Агеев А.И. Репертуар властвования // Экономические стратегии. 2013. № 8. С. 5.

2. Агеев А.И., Логинов Е.Л., Шкута А.А. Конвергентный мониторинг и программирование личности как инструмент оперирования интеллектуальной динамикой поведения больших групп людей // Экономические стратегии. 2018. № 2. С. 70–87.

3. Ветров Д.П. Машинное обучение — состояние и перспективы: Труды XV Всероссийской научной конференции RCDL’2013 // Электронные библиотеки: перспективные методы и технологии, электронные коллекции. Ярославль: Ярославский государственный университет им. П.Г. Демидова, 2013. С. 21–27.

4. Агеев А.И. Выбор идентичности // Экономические стратегии. 2014. № 1. С. 5.

5. Логинов Е.Л., Райков А.Н., Шкута А.А. Использование нейротехнологий при программировании когнитивно-поведенческих стереотипов действий личностей для устойчивого функционирования систем управления социумом // Нейрокомпьютеры: разработка, применение. 2018. № 9. С. 34–45.

6. Агеев А.И. Предпринимательство: проблемы собственности и культуры. М.: Наука, 1991. 112 с.

7. Расследование Das Magazin: как Big Data и пара ученых обеспечили победу Трампу и Brexit [Электронный ресурс] // The Insider. URL: https://theins.ru/politika/38490.

8. Гнездицкий В.В., Корепина О.С., Чацкая А.В., Клочкова О.И. Память, когнитивность и эндогенные вызванные потенциалы мозга: оценка нарушения когнитивных функций и объема оперативной памяти без психологического тестирования // Успехи физиологических наук. 2017. № 1. С. 3–23.

9. Емелин К.Э., Ахапкин Р.В., Александровский Ю.А. Когнитивный профиль пациентов с депрессивными расстройствами и его значение для антидепрессивной терапии и социального функционирования // Обозрение психиатрии и медицинской психологии имени В.М. Бехтерева. 2018. № 1. С. 23–32.

10. Зеленина Н.В., Нагибович О.А., Овчинников Б.В., Юсупов В.В. Возможности использования современных достижений психогенетики в интересах профессионального психологического отбора в Вооруженных силах Российской Федерации // Вестник Российской военно-медицинской академии. 2016. № 3. С. 245–250.

11. Апанович З.В. Эволюция методов визуализации коллекций научных публикаций // Russian Digital Libraries Journal. 2018. № 1. С. 1–42.

12. Абрамов Е.С., Басан Е.С., Басан А.С. Разработка системы управления уровнем доверия в мобильной кластерной беспроводной сенсорной сети // Известия ЮФУ. Технические науки. 2015. № 7. С. 41–52.

13. Гриднев С.Е., Кургалин С.Д., Туровский Я.А. Моделирование поведения человека и его ошибок с использованием искусственных нейронных сетей // Актуальные направления научных исследований XXI века: теория и практика. 2015. № 5-2. С. 249–253.

14. Цукерман В.Д. Математическая модель фазового кодирования событий в мозге // Математическая биология и биоинформатика. 2006. № 1-2. С. 97–107.

15. Иванов В.В., Коробова А.Н. Государственное и муниципальное управление с использованием информационных

технологий. М.: ИНФРА-М, 2011. 383 с.

16. Астахова Л.В. Информационное поведение пользователя цифровых ресурсов как объект технологического мониторинга в обществе, основанном на знаниях // Научно-техническая информация. Серия 1: Организация и методика информационной работы. 2018. № 10. С. 17–25.

17. Стриженко А.А. Изменение коммуникативных и социальных моделей поведения людей в цифровую эпоху: мифы и реальность // Вестник Алтайской академии экономики и права. 2010. № 1. С. 57–61.

18. Иванов В.В., Коробова А.Н. Государственное и муниципальное управление с использованием информационных

технологий. М.: ИНФРА-М, 2011. 383 с.

19. Артеменков С.Л. Сетевое моделирование психологических конструктов // Моделирование и анализ данных. 2017. № 1. С. 9–28.

20. Дружинин В.Н., Бирюков С.Д., Воронин А.Н., Толоконникова Е.В. Психометрическое моделирование тестирования интеллекта и креативности // Информационный бюллетень РФФИ. 1996. № 4.

21. Новиков Д.А., Чхартишвили А.Г. Рефлексивные игры. М.: СИНТЕГ, 2003. 160 с.

22. Агарков В.А., Бронфман С.А., Божко С.А., Шерина Т.Ф., Гуртовенко И.Ю. Влияние социально-психологических факторов и особенностей культуры на ожидания российских пациентов от психотерапии // Вестник новых медицинских технологий. 2014. № 1. С. 204.

23. Дьячук П.П. (мл.), Дьячук П.П., Карабалыков С.А., Шадрин И.В. Диагностика неустойчивых когнитивных состояний активных агентов // Нейроинформатика-2016: Сб. науч. трудов: В 3 ч. М.: Национальный исследовательский ядерный университет «МИФИ», 2016. С. 259–270.

24. Володенков С.В., Митева В.В. Особенности трансформации моделей массового информационного потребления в условиях эволюции технологий политической коммуникации // Гражданин. Выборы. Власть. 2019. № 2. С. 122–133.

25. Черниговская Т.В., Шелепин Е.Ю., Защиринская О.В. и др. Психофизиологические и нейролингвистические аспекты процесса распознавания вербальных и невербальных паттернов коммуникации. СПб.: ВВМ, 2016. 203 с.

26. Лефевр В.А. Рефлексия. М.: Когито-Центр, 2003. 495 с.

27. Райков А.Н. Конвергентный синтез когнитивной модели на основе глубокого обучения и квантовых семантик // International Journal of Open Information Technologies. 2018. Т. 6. № 12. С. 43–50.

28. Президент Дональд Трамп объявляет стратегию национальнойбезопасности [Электронный ресурс] // US. Embassy in Belarus. URL: https://by.usembassy.gov/be/президент-дональд-трамп-объявляет-ст/

29. Рогожникова Т.М. Политическая коммуникация и вербальная суггестия в формате психолингвистической парадигмы // Политическая лингвистика. 2019. № 2. С. 24–37.

30. Субботина Н.Д. Суггестия и контрсуггестия в обществе. М.: КомКнига, 2006. 208 с.

31. Смирнов И., Безносюк Е., Журавлев А. Психотехнологии. Компьютерный психосемантический анализ и психокоррекция на неосознаваемом уровне. М.: Прогресс, Культура, 1995. 416 с.

32. Выполняемые проекты [Электронный ресурс] // НИЦ «Курчатовский институт». URL: http://www.nrcki.ru/catalog/index.shtml?g_show=34693&path=3878,34693.

33. Научно-практические разработки / Институт психологии Российской академии наук [Электронный ресурс] // Институт психологии РАН. URL: http://www.ipras.ru/cntnt/rus/institut_p/nauchnopra.html.

34. Макаров В.Л., Бахтизин А.Р., Сушко Е.Д. Мультиагентные системы и суперкомпьютерные технологии в общественных науках // Нейрокомпьютеры: разработка, применение. 2017. № 5. С. 3–9.

35. Макаров В.Л., Бахтизин А.Р., Сушко Е.Д., Сушко Г.Б. Моделирование социальных процессов на суперкомпьютерах: новые технологии // Вестник Российской академии наук. 2018. № 6. С. 508–518.

36. Денисов А.А., Денисова Е.В. Конструирование абстрактных сознаний // Информационные войны. 2013. № 1. С. 2–13.

37. Денисов А.А., Денисова Е.В. Теорема и парадокс барьера осознания // Экономические стратегии. 2015. № 5–6. С. 142–157.

38. Вайно А.Э., Кобяков А.А., Сараев В.Н. Образ Победы. М.: Институт экономических стратегий РАН, компания «GLOWERS», 2012. 140 с.

39. Психолингвистическая экспертная система ВААЛ [Электронный ресурс]. URL:http://www.vaal.ru/prog/rukov.php.

40. Аудиальная программа «Бименталь» [Электронный ресурс] // Mirmageric.ru. URL: https://mirmageric.ru/prs.php?str=bmental.

41. Бугаев А.С., Логинов Е.Л., Райков А.Н., Сараев В.Н. Семантика сетевых контактов // Научно-техническая информация. Серия 1: Организация и методика информационной работы. 2009. № 2. С. 33–36.

42. Агеев А.И., Логинов Е.Л. Нейроменеджмент личности. М.: Институт экономических стратегий, 2019. 120 с.

43. Агеев А.И., Логинов Е.Л. Битва за будущее: кто первым в мире освоит ноомониторинг и когнитивное программирование субъективной реальности? // Экономические стратегии. 2017. № 2. С. 124–139.