Climate Change and Energy Transition

DOI: 10.33917/es-6.192.2023.16-29

The author shows that global warming is determined not by human activity, but by natural phenomena – primarily by a decrease in the inclination angle of the Earth’s rotation axis, changing the insolation of the polar/equatorial regions and, as a consequence, the intensity of meridional atmospheric-oceanic heat and mass transfer. The article presents results of measurements of the neutrino flux from the decay of the potassium-40 isotope, which confirmed the potassium content predicted by the theory of a hydrogen Earth, the flux of radiogenic heat from which must be taken into account in climate calculations. The article presents the results of experimental studies of hydrogen degassing from the depths of the Earth – the cause of the destruction of atmospheric ozone, the content of which in turn determines the temperature and pressure of the surface air. Spatial and temporal correlations of hydrogen degassing and ozone destruction, as well as the influence of gravitational forces of the Moon and the Sun on degassing, make it possible for the first time to make long-term forecasts of meteorological changes and the occurrence of climate disasters. The author substantiates the need for changes in climate and energy policy.

References:

1. Sherstyukov B.G. Global’noe poteplenie i ego vozmozhnye prichiny [Global Warming and its Possible Reasons]. Gidrometeorologiya i ekologiya, 2023, no 70, pp. 7–37, DOI: 10.33933/2713-3001-2023-70-7-37

2. Syvorotkin V.L. Neskonchaemaya tsep’ prestuplenii Monreal’skogo protokola [Never-Ending Chain of the Montreal Protocol Crimes]. IA Regnum, 2017, available at: https://regnum-ru.turbopages.org/regnum.ru/s/news/2302128.html

3. Callendar G.S. The artificial production of carbon dioxide and its influence on temperature. Quarterly Journal of the Royal Meteorological Society, 1938, vol. 64, no 275, pp. 223–240.

4. Keeling C.D. The Concentration and Isotopic Abundances of Carbon Dioxide in the Atmosphere. Tellus, 1960.

5. Schneider S.H., Azar C. Are Uncertainties in Climate and Energy Systems a Justification for Stronger Near-term Mitigation Policies? In Erlich, E. (ed.), Proceedings of the Pew Center Workshop on The Timing of Climate Change Policies. 2001. Washington D.C., 11, 12 October 2001, pp. 85–136, available at:

https://stephenschneider.stanford.edu/Publications/PDF_Papers/timingazarschneide.pdf

6. Schneider S H. The greenhouse effect: Science and policy. Science, 1989, vol. 243, pp. 771–781.

7. Schneide S.H. News Plays Fast and Loose With the Facts. Editorial. Detroit News, 1989, 5 December. 10A, available at: https://stephenschneider.stanford.edu/Publications/PDF_Papers/DetroitNews.pdf

8. Smirnov B.M. Fizika global’noi atmosfery. Parnikovyi effekt, atmosfernoe elektrichestvo, evolyutsiya klimata [Physics of the Global Atmosphere. Greenhouse Effect, Atmospheric Electricity, Climate Evolution]. Dolgoprudnyi, Intellekt, 2017, 256 p.

9. Demirchyan K.S., Kondrat’ev K.Ya., Demirchyan K.K. Global’noe poteplenie i “politika” ego predotvrashcheniya [Global Warming and the “Policy” of its Prevention]. Biosfera, 2010, vol. 2, no 4, pp. 488–502.

10. Kondrat’ev K.Ya., Demirchyan K.S. Klimat Zemli i “protokol Kioto” [Earth’s Climate and the Kyoto Protocol]. Vestnik RAN, 2001, vol. 71, no 11, pp. 1002–1009.

11. Monin A.S., Sonechkin D.M. Kolebaniya klimata po dannym nablyudenii. Troinoi solnechnyi i drugie tsikly [Climate Variations Based on Observational Data. Triple Solar and Other Cycles]. Moscow, Nauka, 2005, 190 p.

12. Smirnov B.M. Problemy global’noi energetiki atmosfery [Problems of Global Atmospheric Energy]. Teplofizika vysokikh temperature, 2021, vol. 59, no 4, pp. 589–599.

13. Special report: global warming of 1.5 °C. IPCC, available at: https://www.ipcc.ch/sr15/

14. Luk’yanova R.Yu. O vliyanii solnechnoi aktivnosti na izmenenie klimata [About the Impact of Solar Activity on Climate Change]. Saint Petersburg, 2023.

15. Fedorov V.M. Insolyatsiya Zemli i sovremennye izmeneniya klimata [Insolation of the Earth and Modern Climate Change]. Moscow, Fizmatlit, 2018, 232 p.

16. Fedorov V.M. Evolyutsiya sovremennogo global’nogo klimata Zemli i ee vozmozhnye prichiny [Evolution of the Earth’s Modern Global Climate and its Possible Causes]. Georisk, 2020, vol. 14, no 4, pp. 16–29, DOI: 10.25296/1997-8669-2020-14-4-16-29

17. Fedorov V.M., Zalikhanov A.M., Frolov D.M. Insolyatsionnaya kontrastnost’ kak faktor izmeneniya global’nogo klimata Zemli [Insolation Contrast as

a Factor in Changing the Global Climate of the Earth]. Okruzhayushchaya sreda i energovedenie, 2023, no 1, available at: https://cyberleninka.ru/article/n/

insolyatsionnaya-kontrastnost-kak-faktor-izmeneniya-globalnogo-klimata-zemli

18. Larin V.N. Gipoteza iznachal’no gidridnoi Zemli (novaya global’naya kontseptsiya) [Hypothesis of Initially Hydride Earth (New Global Concept)] AN SSSR. Ministerstvo geologii SSSR. IMGRE. Moscow, Nedra, 1975, 101 p.

19. Larin V.N. Gipoteza iznachal’no gidridnoi Zemli [Hypothesis of Initially Hydride Earth]. 2-e izd., pererab. i dop. Moscow, Nedra, 1980, 216 p.

20. Larin V.N. Nasha Zemlya (proiskhozhdenie, sostav, stroenie i razvitie iznachal’no gidridnoi Zemli) [Our Earth (Origin, Composition, Structure and Development of the Initially Hydride Earth)]. Moscow, Agar, 2005, 248 p.

21. Bezrukov L.B., Karpikov I.S., Mezhokh A.K., Silaeva S.V., Sinev V.V. Kakuyu dolyu kaliya v Zemle dopuskaet eksperiment Boreksino [What Proportion of Potassium in the Earth is Permitted by Borexino’s Experiment]. Izvestiya RAN, Seriya Fizicheskaya, 2023, vol. 87, no 7, pp. 1047–1050.

22. Bezrukov L.B., Kurlovich A.S., Lubsandorzhiev B.K., Mezhokh A.K., Morgalyuk V.P., Sinev V.V., Zavarzina V.P. How Geoneutrinos can help in understanding of the Earth heat flux. 2017. J. Phys., Conf., Ser. 934 012011, DOI 10.1088/1742-6596/934/1/012011

23. Bezrukov L., Karpikov I., Sinev V. The indication for 40K geo-antineutrino flux with Borexino phase-III data. arXiv: 2304.02747 [hep-ex, astro-ph.EP] Borexino Collab. (M. Agostini et al.). Phys.

24. Riser S.C., Freeland H.J., Roemmich D., et al. Fifteen years of ocean observations with the global Argo array. Nature Clim. Change, 2016, vol. 6, pp.

145–153, available at: https://doi.org/10.1038/nclimate2872

25. Larin N., Zgonnik V., Rodina S., Deville E., Prinzhofer A., Larin V.N. Natural Molecular Hydrogen Seepage Associated with Surficial, Rounded Depressions on the European Craton in Russia. Natural Resources Research, 2014, DOI: https://doi.org/10.1007/s11053-014-9257-5

26. Syvorotkin V.L. Degazatsiya Zemli i razrushenie ozonovogo sloya [Earth Degassing and Ozone Layer Destruction]. Priroda, 1993, no 9, pp. 35–45.

27. Syvorotkin V.L. Glubinnaya degazatsiya i global’nye katastrofy [Deep Degassing and Global Disasters]. Moscow, Geoinformmark, 2002, 250 p.

28. Syvorotkin V.L. Sostoyanie ozonovogo sloya i pogodnye anomalii v 2019 godu [Ozone Layer Condition and Weather Anomalies in 2019]. Prostranstvo i Vremya, 2019, no 34, pp. 209–234.

29. Syvorotkin V.L. O prirode prirodnykh pozharov [On the Nature of Wildfires]. Prostranstvo i Vremya, 2016, vol. 11, no 1, pp. 22–44.

30. Okruzhayushchaya sreda i izmenenie klimata: Karty ozona [Environment and Climate Change: Maps]. Select Ozone Maps, available at: https://expstudies.tor.ec.gc.ca/cgi-bin/clf2/selectMap

31. Glaz’ev S.Yu. Teoriya dolgosrochnogo tekhniko-ekonomicheskogo razvitiya [Theory of Long-term Technical and Economic Development]. Moscow, VlaDar, 1993, 309 p.

32. Fisher J., Pry R. A simple substitution model of technological change. Technological Forecasting and Social Change, 1971, N 3, pp. 75–88.

33. Glaz’ev S.Yu. Nanotekhnologii kak klyuchevoi faktor novogo tekhnologicheskogo uklada v ekonomike [Nanotechnology as a Key Factor in a New

Technological Order of the Economy]. Pod red. akademika RAN S.Yu. Glaz’eva i professora V.V. Kharitonova. Moscow, Trovant, 2009, 304 p.

34. Nakicenovic N. Energy Strategies for Mitigating Global Change. IIASA, January 1992.

Следить за новостями ИНЭС: