Modeling trends in economic digitalization based on the synthesis of empirical information: limitations and opportunities

DOI: 10.33917/es-6.204.2025.26-33

Conceptual approaches to modeling trends in information technology are discussed. It is shown that modeling IT trends solely based on technology interest data, such as Gartner’s Hype Cycle, is insufficient to predict the emergence of new technologies. Various IT examples demonstrate the need to analyze the connections between technologies, as success in some areas of economic digitalization creates the conditions for technological development in others. Furthermore, due to the high knowledge intensity of information technology, the depth of fundamental and applied scientific research must be taken into account. When modeling trends, the demand for technologies in specific economic sectors must also be considered. Simulations based on empirical data must identify simple and explainable relationships, and high-quality predictions must be achieved by synthesizing all the relationships of the technology under study. The proposed conceptual approach can also be applied to modeling other socioeconomic processes based on the synthesis of empirical data.

References:

1. Almalawi A., Soh B., Li A., Samra H. Predictive Models for Educational Purposes. A Systematic Review. Big Data Cogn. Comput., 2024, no 8, pp. 187, DOI: https://doi.org/10.3390/ bdcc8120187

2. Hassan M., Awan F.M., Naz A., Andrés-Galiana, de E.J., Alvarez O., Cernea A.; Fernández-Brillet L., Fernández-Martínez J.L., Kloczkowski A. Innovations in Genomics and Big Data Analytics for Personalized Medicine and Health Care. A Review. Int. J. Mol. Sci., 2022, no 23, 4645, DOI: https://doi.org/10.3390/ ijms23094645

3. Ribeiro F.L., Rybski D. Mathematical models to explain the origin of urban scaling laws. Physics Reports, 2023, vol. 1012, 23 April, pp. 1–39.

4. Mokhov V., Aliukov S., Alabugin A., Osintsev K. A Review of Mathematical Models of Macroeconomics, Microeconomics, and Government Regulation of the Economy. Mathematics, 2023, no 11, 3246, DOI: https://doi.org/10.3390/ math11143246

5. Helbing D. Pluralistic Modeling of Complex System. Science and Culture, 2010, vol. 76, no 9/10, pp. 399–417.

6. Zhu Z., Xie H., Chen L. ICT industry innovation: Knowledge structure and research agenda. Technological Forecasting and Social Change, 2023, vol. 189, 122361.

7. Kleyner G.B. Dokazatel’noe modelirovanie kak perspektivnyy instrument nauchnogo issledovaniya sotsial’no-ekonomicheskikh protsessov [Evidence-based Modeling as a Promising Tool for Scientific Research of Socio-economic Processes]. Ekonomika i upravlenie: problemy, resheniya, 2023, no 6, vol. 2, pp. 5–16, DOI: https://doi.org/10.36871/ek.up.p.r.2023.06.02.001

8. O’Leary D.E. Gartner’s hype cycle and information system research issues. International Journal of Accounting Information Systems, 2008, no 9, pp. 240–252.

9. Chen X., Han T. Disruptive Technology Forecasting based on Gartner Hype Cycle. 2019 IEEE Technology & Engineering Management Conference (TEMSCON), Atlanta, GA, USA, 2019, pp. 1–6, DOI: 10.1109/TEMSCON.2019.8813649.

10. Dedehayir O., Steinert M. The hype cycle model: A review and future directions. Technological Forecasting and Social Change, 2016, July, vol. 108, pp. 28–41.

11. Minakov V.F., Put’kina L.V., Lobanov O.S. Ekonomiko-matematicheskaya model’ azhiotazhnogo tsikla v kon”yunkture rynkov [Economic and Mathematical Model of the Rush Cycle in Market Conditions]. Izvestiya Sankt-Peterburgskogo gosudarstvennogo ekonomicheskogo universiteta, 2025, no 5(149), pp. 7–13.

12. Sasaki H. Simulating Hype Cycle Curves with Mathematical Functions: Some Examples of High-Tech Trends in Japan. International Journal of Managing Information Technology, 2015, no 7(2), pp. 1–12, DOI:10.5121/ijmit.2015.7201

13. Levensov V., Radaev A., Salkutsan S. Mathematic model of production technology transformation. SHS Web of Conferences, 2018, no 44, 00054, DOI: 10.1051/shsconf/20184400054

14. Silvestrini P., Amato U., Vettoliere A., Silvestrini S., Ruggiero B. Rate equation leading to hype-type evolution curves: A mathematical approach in view of analysing technology development. Technological Forecasting & Social Change, 2017, no 116, pp. 1–12.

15. Google Trends [Website], available at: https://trends.google.com/trends/

16. Dell М. Deep Learning for Economists. Journal of Economic Literature, 2025, vol. 63, no 1, pp. 5–58.

17. Zheng Y., Xu Z., Xiao A. Deep learning in economics: a systematic and critical review. Artif Intell Rev., 2023, no 56, 9497–9539, DOI: https://doi.org/10.1007/ s10462-022-10272-8

18. LeCun Y., Bengio Y., Hinton G. Deep learning. Nature, 2015, no 521, pp. 436–444, DOI: https://doi.org/10.1038/nature14539

19. Zhu Z., Xie H., Chen L. ICT industry innovation: Knowledge structure and research agenda. Technological Forecasting and Social Change, 2023, April, vol. 189, 122361.

20. Zubov Ya.O., Neizvestnyy S.I., Ryabov D.A., Slavin B.B. Mirovoe razdelenie truda v IT kak uslovie IT-globalizatsii 2.0 [Global Division of Labor in IT as a Condition for IT Globalization 2.0]. Informatsionnoe obshchestvo, 2025, no 1, pp. 94–108.

Следить за новостями ИНЭС: