роблема секьюритизации и трансфера катастроф-**L**ных рисков в настоящее время достаточно широко обсуждается в деловых и научных кругах многих стран. Она находит отражение как в фундаментальной теории устойчивости финансовых рынков, так и в ряде прикладных исследований отечественных и зарубежных специалистов в области страхования и риск-менеджмента. Вместе с тем остается целый спектр актуальных вопросов многомерной оценки рисков сложных (интегральных) катастрофных событий и их имплементации в механизмы страхования.

Сформировавшийся в середине 1990-х годов рынок катастрофных облигаций до определенного момента не учитывал риски крупных «рукотворных» катастрофных событий, к которым относятся в первую очередь террористические акты и техногенные катастрофы (например, аварии на Чернобыльской АЭС, Саяно-Шушенской ГЭС, индийских химических заводах в Бхилаи и Бхопале). Таким образом, мы должны рассматривать три принципиально разных вида катастрофных рисков: природные, техногенные, террористические. Остановимся подробнее на последнем. Следует отметить, что до известных событий 11 сентября 2001 г. во всем мире было зафиксировано немало крупных террористических актов, уже обозначивших тенденцию к росту суммарного ущерба (табл. 1).

После событий 11 сентября 2001 г. в глобальном масштабе рост количества террористических актов принял устойчивый характер, а поскольку первопричины терроризма как явления в ближайшей перспективе не могут быть полностью устранены, риск этой категории приобретает весьма существенный вес в разрабатываемых моделях катастрофного страхования. Рассмотрим теперь типовую структуру ущерба от террористического акта на примере событий 11 сентября. По оценкам

Диверсификация модели катастрофного страхования

экспертов, покрываемый страховщиками ущерб от этого события составил 40,2 млрд долл. и распределился по следующим видам страхования: страхование жизни (2,7 млрд долл. - 7%); страхование имущества комплекса зданий Всемирного торгового центра (ВТЦ) с инфраструктурой (3,5 млрд долл. - 9%); прочего имущества (6,0 млрд долл. — 15%); перерыв бизнес-деятельности (11,0) млрд долл. — 27%); ответственность за отмену запланированных бизнес-мероприятий (1,0 млрд долл. - 2%); компенсации работникам (2,0 млрд долл. — 5%); гибель воздушных судов (0,5 млрд долл. -1%); ответственность авиаперевозчиков (3,5 млрд долл. — 9%); прочие убытки (10 млрд долл. — 25%).

Саркисов Сергей Эдуардович — председатель совета директоров Группы РЕСО, вице-президент Всероссийского союза страховщиков, канд. экон. наук.

Предварительная оценка застрахованного ущерба от крупнейших природных катастрофных явлений, например урагана Эндрю (20,51 млрд долл. в ценах 2002 г.), показывает, что потери от террористических актов по своему порядку вполне сопоставимы с ущербом от природных катаклизмов. События 11 сентября стали поворотным моментом в осмыслении рисков и смены страховых моделей и политики ведущих страховых и перестраховочных компаний. Отсутствие необходимых финансовых ресурсов для обеспечения страховых выплат такого масштаба привело в конечном итоге к частичным отказам страхования рисков, связанных с террористическими угрозами.

Так, например, до событий 11 сентября Чикагский аэропорт был застрахован на сумму 750 млн долл. на случай атаки террористов с ежегодной премией в 125 тыс. долл., после же трагических событий страховые компании кардинально изменили свою политику — 150 млн долл. покрытия с ежегодной премией 6,9 млн долл. Ряд

других объектов, например парк Голден Гейт (США), и вовсе были лишены возможности страхования от террористических угроз с последующим изменением условий обычного страхования — снижение покрытия со 125 до 25 млн долл. с одновременным увеличением страховой премии в 2 раза. Ужесточение бизнес-политики со стороны страховых компаний тем не менее не повлияло на спрос на страховые компен-

бенно ведущие бизнес в геополитически опасных регионах (Иран, Ирак, Афганистан и т.д.).

Как и в случае природных катастрофных событий, возникает закономерный вопрос: можно ли в принципе компенсировать возможные убытки такого масштаба и какими должны быть рыночные механизмы компенсации? В отличие от классических моделей катастрофного страхования, пред-

После событий 11 сентября 2001 г. в глобальном масштабе рост количества террористических актов принял устойчивый характер.

сационные инструменты по рискам террористических атак. Заинтересованными клиентами здесь являются владельцы дорогостоящих и уязвимых объектов — мест массового скопления людей, информационных сетей (включая интернет-ресурсы), организаторы высокобюджетных культурномассовых мероприятий (олимпиады, чемпионаты), нефтяные и энергетические компании, осолагающих стандартные деривативные инструменты (катастрофные облигации), комплексные модели страхования сложных катастрофных событий должны учитывать ряд концептуальных дополнений.

Во-первых, нельзя исключать эффект синергетического воздействия природных и «рукотворных» катастрофных событий на ве-

Таблица 1

Наиболее крупные террористические акты (до 2002 г.)					
Застрахованная собственность (исключая страхование жизни и здоровья), млн долл. (в ценах 2001 г.)	Катастрофное событие	Кол-во раненых, чел.	Кол-во погибших, чел.	Дата	Место события
19 000	Атака на Всемирный торговый центр, Пентагон и объекты в Пенсильвании	2250	3100	11.09.01	Нью-Йорк, Вашингтон, Пенсильвания
907	Взрыв бомбы в Сити	54	1	24.04.93	Лондон
744	Взрыв бомбы ИРА	228	0	15.06.96	Манчестер
725	Взрыв бомбы в гараже ВТЦ	1000	6	26.02.93	Нью-Йорк
671	Взрыв бомбы в финансовом квартале	91	3	10.04.92	Лондон
398	Подрыв мятежниками 14 самолетов	15	20	24.07.01	Шри-Ланка, аэропорт Коломбо
259	Взрыв бомбы ИРА в Южном доке	100	2	09.02.96	Лондон
145	Подрыв здания в Оклахома-Сити	467	166	19.04.95	Оклахома, США
138	Подрыв самолета В-747	0	270	21.12.88	Локэрби, Шотландия
127	Захват и подрыв трех самолетов	0	0	06.09.70	Иордания

Источник: Swiss Re, Economic Research. August 2002.

личину суммарного ущерба, поскольку природная катастрофа связана с проявлениями хаоса и напрямую провоцирует террористическую агрессию.

Во-вторых, информационная эффективность рынков классических и сложных катастрофных долговых обязательств (включая облигации «летальных катастроф») а priori не равнозначна, ввиду, на-

метров среды (скорости ветра, высоты волны, градиентов влажности и температуры, давления, объема выпавших осадков, магнитуды толчков и т.д.). Глобальное распределение станций наблюдения со стандартизованной измерительной аппаратурой позволяет эффективно решать вопросы, связанные с возмещением ущерба и определением причин природных катастроф.

События 11 сентября стали поворотным моментом в осмыслении рисков и смены страховых моделей и политики ведущих страховых и перестраховочных компаний.

пример, потенциальной возможности публичной угрозы со стороны террористов совершить акт определенного масштаба.

В-третьих, для комплексных моделей катастрофного страхования возрастает роль компонента moral hazard, т.е. угрозы односторонней переоценки системы рисков без уведомления заинтересованных сторон, например инвесторов.

В-четвертых, секьюритизация катастрофного страхования сложных событий требует построения интегральной системы триггеров, обеспечивающих эффективную безопасность капиталовложений инвесторов.

Рассмотрим подробнее концептуальные подходы к построению системы триггеров катастрофных долговых обязательств по сложным событиям. Развитие рынка классических катастрофных облигаций с самого начала продиктовало необходимость квантования параметров, однозначно определяющих момент наступления катастрофного события. Наиболее эффективными в этом аспекте являются триггеры, основанные на отстроенной системе мониторинга, измерения и регистрации физических пара-

Следует, однако, отметить, что данный класс триггеров обладает и некоторыми недостатками. В частности, измеренные физические параметры наступающего катастрофного события могут не совсем точно отражать истинные экономические и физические потери от природного катаклизма. В качестве альтернативного подхода здесь можно предложить индексный метод триггирования. Развитие индексного подхода в моделировании рынка катастрофных облигаций породило предпосылки для создания инновационных продуктов в области страховых деривативов — катастрофных облигаций «летального» класса. В отличие от синтетического индекса потерь триггер «летальных» катастрофных облигаций основан на официальных статистических данных по динамике смертности населения конкретного региона. Простота регистрации национальными статистическими органами всплесков показателей смертности в результате катастрофных событий делает эту систему триггеров объективной и весьма привлекательной для инвесторов. Так, за последние два года объем сделок по катастрофным облигациям «летального» класса превысил уровень в 1 млрд долл.

Привлекательность триггера, основанного на простом демографическом показателе смертности, заключается в возможности диверсификации рисков по гендерно-возрастным группам. Взвешенный показатель смертности в момент времени (t) (календарный год) можно определить по следующей формуле:

$$\hat{q}_t = \sum_{x} \omega_{x,m} \, \hat{q}_{m,x,t} + \omega_{x,f} \, \hat{q}_{f,x,t},$$

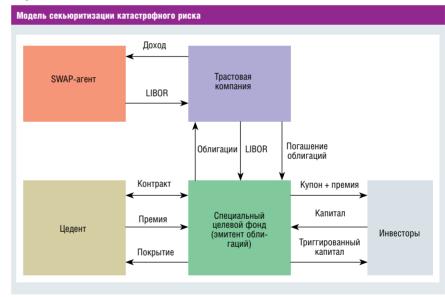
где $\hat{q}_{m,x,t}$ и $\hat{q}_{f,x,t}$ — показатели смертности для возрастной груп-

пы x в календарном периоде t для мужской (m) и женской (f) части населения. Для каждой конкретной страны предполагается оценка весовых коэффициентов возрастных групп для периода t.

В *табл. 2* приведено распределение весовых коэффициентов для триггерной оценки катастрофных трехгодичных облигаций компании Tartan Capital.

Триггеры, основанные на взвешенных показателях смертности, могут эффективно использоваться в моделях катастрофного страхования на таких событиях, как эпидемии и пандемии. При сложных катастрофных событиях остается не вполне изученным вопрос оценки «шоковых всплесков» показателей смертности в результате террористических актов. В качестве типичного примера приведем события 11 сентября. Одномоментная гибель 3 тыс. человек не настолько сильно влияет на средневзвешенный по году показатель смертности населения США, чтобы использовать подобный триггер в модели компенсации потерь такого масштаба. Очевидно, что показатель смертности должен в этом случае иметь сильную степень локализации и среднесуточную оценку.

Рассмотрим расширенную модель комплексного катастрофного страхования сложных событий. В данном случае одновременно учитываются риски летальных исходов и материальных потерь, что позволяет использовать механизм двойного триггирования событий. Первый тип катастрофного события связан с потерей собственности или летальными потерями выше определенного назначенного уровня (1-й триггер), второй тип — одновременная потеря собственности и летальные потери выше назначенных уровней (2-й триггер). Общая модель секьюритизации катастрофного риска приведена на рис. 1.


Таблица 2

Распределение весовых коэффициентов для триггерной оценки катастрофных трехгодичных облигаций компании Tartan Capital

Возрастная группа	Весовой коэффициент для групп мужчин, %	Весовой коэффициент для групп женщин, %
1–4	0	0
5–14	0,1	0,1
15–24	0,4	0,4
25–34	8,2	6,1
35–44	26,0	12,7
45–54	21,4	7,8
55–64	9,8	2,7
65–74	2,3	0,8
75–84	0,6	0,4
84+	0,1	0,1
Всего	68,8	31,2

Источник: Tartan Transations. Linfoot 2007.

Рисунок 1

В модели сложных катастрофных событий условия функционирования денежных потоков несколько усложняются.

- 1) Инвесторы приобретают катастрофные облигации, которые депонируются на трастовых счетах, обеспечивая таким образом страховое покрытие.
- 2) До экспирации происходит выплата по купонам, и в случае наступления одного из триггируе-

мых событий выплата по купону отменяется.

3) В момент погашения происходят возврат основного капитала и оплата последнего купона в случае отсутствия катастрофных событий за весь период обращения, только основного капитала в случае одного тригируемого события и потеря всего капитала для инвестора в случае наступления двух триггируемых событий.

4) В случае наступления катастрофного события близко к моменту погашения облигации срок обращения последней может быть продлен с последующими перерасчетами потоков.

Таким образом, комплексная модель секьюритизации катастрофного страхования может быть достаточно эффективно определена в терминах триггируемых событий т:

$$\tau_1 = \inf\{t > 0 : I_t^{AL} > I_{AP_s}^L\},$$

где s = [t] + 1, если t < T и s = T, если t = T,

$$\begin{aligned} \tau_2 &= \inf\{t > 0: I_t^D > I_{AP}^D\}, \\ \tau_3 &= \min\{\tau_1, \tau_2\}, \\ \tau_4 &= \max\{\tau_1, \tau_2\}, \end{aligned}$$

в каждом периоде времени процентная ставка принимает значение $\{r(k), k = 0, 1, 2, ..., T - 1\}.$

Данная модель описывает условия обращения купонной катастрофной облигации сроком Т лет с ценой размещения F и ежегодными купонными выплатами $C_t(t = 1, 2, 3,..., T)$. При наличии риска на возврат капитала и купонные выплаты предполагается, что потенциально возможные ежедневные потери собственности $I^L = (I_t^L)_{0 \le t \le T}$ в результате катастрофного события могут иметь положительную функцию распределения F_L .

В агрегированном виде процесс потерь можно представить как

$$I_t^{AL} = \sum_{t=1}^{t} I_t^{L}, t \in [0, T]$$

ва летальных событий, имеющих функцию распределения F_D : $I^D = (I_t^D)_{0 \le t \le T}$. Следует особо отметить, что оценки суточных потерь собственности I_t^L и летальных исходов I_t^D могут коррелировать между собой (через оцениваемый параметр τ_{LD}). Пороговое значение потерь собственности определяется как накопленная сумма

ежедневных потерь за отчетный период обращения (t) облигации и корректируется каждый год:

$$I_{AP_t}^L = \sum_{i=0}^{t-1} I_i^L + L^{AP_t}$$

 $I_{AP_t}^L = \sum_{i=0}^{t-1} I_i^L + L^{AP}.$ При этом пороговое значение летальных потерь ежегодно остается постоянным в течение всего периода обращения.

в России. Успешный зарубежный опыт катастрофного страхования крупнейшего спортивного мероприятия — чемпионата по футболу на кубок FIFA в 2006 г. доказал возможность комплексного страхования сложных событий катастрофного типа, в котором может быть учтен не толь-

Потери от террористических актов по своему порядку вполне сопоставимы с ущербом от природных катаклизмов.

Представленная модель секьюритизации катастрофного страхования является достаточно привлекательной не только для страховых и перестраховочных компаний, но и для портфельных инвесторов консервативного типа. Анализ статистических данных по рынку катастрофных облигаций за последние пять лет показывает исключительно малые значения коэффициента корреляции их котировок с основными инструментами финансового рынка ($\rho = 0.03 - 0.26$).

Дополнительным фактором привлекательности может стать реализация некоторых моделей частно-государственного партнерства в катастрофном страховании. Актуальность данного направления развития рынка катастрофных долговых обязательств стала особенно очевидной для секьюритизации рисков ряда национальных проектов ко печальный опыт Мюнхенской Олимпиады 1972 г., но и спектр геоклиматических факторов. В этом аспекте проект «Олимпиада-2014» может придать соответствующий импульс развитию национального рынка катастрофного страхования.

ПЭС 10061/12.03.2010

Литература

- 1. Саркисов С.Э. Катастрофное страхование: проблемы секьюритизации // Экономические стратегии. 2009. No 7 (93).
- 2. David J. Cummins CAT Bonds and Other Risk-Linked Securities. Temple University, 2008.
- 3. Ganna Reshetar. Pricing of Multiple-Event Coupon Paying CAT Bond. Zurich, 2008.
- 4. Insurability of (Mega)-Terrorism Risk: Challenges and Perspectives. OECD. Paris, 2007.
- 5. Joshua D. Coval, Jakub W. Jurek. Economic Catastrophe Bonds. Harvard, 2008.